One thing that makes my class unique

Photo from, credit Alan Cleaver, under Creative Commons License.

What’s one thing that makes my class unique?

We play Two Truths and a Lie.

Let me explain. I teach 150+ kids each semester (which means I get new ones in January). I used to think that my job was to teach the material, and the kids didn’t need to like me for that mission to be accomplished. It doesn’t matter what they think of me. That’s not my job, so I reasoned. But thanks to reading awesome books like The Essential 55, The Excellent 11 (both by Ron Clark), and most important, Teaching with Love and Logic (Jim Fay and David Funk), I now know that’s completely and totally false. Here’s the truth: You can’t teach students until they like you.

Getting to know my students has become a major part of what teaching means to me now. The Mr. Chase of eight years ago would never have done a get-to-know you activity at all, since it takes valuable instructional time.

The trouble is, it’s super hard to get to know 150 students in one semester. Even learning their names is a monumental task. The cursory get-to-know-you activity on the first day is cool, and better than nothing, but can you really get to know 150 students in ONE DAY? I still do a little mini, fun first-day activity. But here’s an additional, deeper activity that I’ve come to love.

On the first day of class I hand out index cards. I don’t ask students for their information anymore. I can get their parents names, email addresses, phone numbers, address, and more, through our school’s database, just as you probably can. So asking for that information is a waste of time as far as I’m concerned–it’s just busy work for them. Instead, on their index card, I ask them to write their name and Two Truths and a Lie. They can give it to me after the 45 minute period is over. I tell them they can work on it while I’m going over the syllabus, if they find me boring :-). They can even turn it in the next day if they really want to craft an excellent set of statements that will fool their classmates.

Have you ever played this game? Here’s how it works: You write down three statements about yourself, two of which are true and one of which is false. Then people try to guess which statement is the false statement. Students share things that are interesting and unusual–things their closest friends in the class might not even know.

“I speak four languages”

“I have two dogs and a turtle.”

“My grandmother lives in Portugal.”

“I’ve never broken a bone.”

“I’ve been to five continents.”

“I’m a black-belt in Jujitsu.”

“I don’t like chocolate.”

“My dog’s name is Bubbles.”

When you play this at parties, it takes a while–a minute or two for each person. And of course you want to discuss the results afterward. “What languages do you speak??” “Okay, your dog’s name isn’t Bubbles. But do you have a dog? What kind is it? What is its name?”

So if it takes a while, and you want to take your time, how do you fit it into class time? Well, I have a stack of them at the front of the room and whenever we have extra time, throughout the first month or two of school, we pull a random card (or a few) and meet that student. I say “Today we’re going to meet Robert…everyone say hi Robert!” and everyone says “HI ROBERT!!” (way less corny when it actually happens; don’t worry they love it!). Then we read Robert’s card, and on the second reading everyone is required to raise their hand upon hearing the statement they think is false. Great fun. And afterward we ask Robert some follow-up questions.

It’s a fun activity and lets us genuinely get to know one another and learn very unique things about each other. I give them my own Two Truths and a Lie on the first day of class as an example:

1. I’ve done tricks on a flying trapeze.

2. I lived in Peru for a year.

3. My parents have chickens in their backyard.

(Feel free to make guesses as to which of my statements is a lie.)

This was a unique idea to my class, but some of my other teacher friends have adopted it now, so perhaps it doesn’t qualify anymore :-).

This blog post was in response to the prompt, “What is one thing that happens in your classroom that makes it distinctly yours?” which I was encouraged to answer as I participate in the Exploring the MathTwitterBlogosphere challenge. More challenges to come! (And more blog posts, I’m sure!)

Happy Metric Day, by the way!

Mindset List for incoming High School class of 2017

Flickr, Creative Commons License

Happy first day of school! For us, today marks the first day of the school year and we’re welcoming students into our midst. What are the new kids (the freshmen) going to be like?

Each year Beloit College describes the incoming college freshmen class with its now famous “Mindset List.” I looked around and couldn’t find a high-school equivalent. So here’s one I came up with. This is a description of the incoming high school freshmen class (class of 2017). Note that all of descriptions on Beloit’s college freshmen mindset list apply also to high school freshmen. So here’s my own “high school class of 2017 mindset list.” Enjoy!

  1. The Euro has always existed. So has Sponge Bob Square Pants. And Google, Inc. And the iMac. And Viagra.
  2. Bill Gates has always been worth over $100 billion.
  3. You can talk to them about the Sandy Hook shooting or the Virginia Tech massacre, but they won’t remember anything about Columbine, which happened the year they were born.
  4. Star Wars Episode 1: The Phantom Menace is as much of an ‘old-school’ classic as any of the original Star Wars movies. The movies Fight ClubThe MatrixAmerican PieSaving Private RyanArmageddon, and The Sixth Sense also came out in the years they were born.
  5. East Timor has always been a sovereign nation.
  6. George W. Bush and Barack Obama are the only presidents that they really know. Clinton left office when they were just 2.
  7. Exxon and Mobil have always been the same company.
  8. Movies have always been reviewed by Ebert & Roeper .(Gene Siskel died the year they were born; Roger Ebert just died this past April.)
  9. They won’t have any memories of John F. Kennedy Jr, Dr. Spock, Frank Sinatra, Roy Rogers, or Alan Shepherd, all of whom died just as they were being born.
  10. They have always had their music in mp3 format and used mp3 players (invented in 1998). CD players? SO passé.
  11. Seinfeld closed up shop before they were born.


For more events that happened in 1998 and 1999, visit the wikipedia articles. Please feel free to correct any of my above information or suggest additions!

Arithmetic/Geometric Hybrid Sequences

Here’s a question that the folks who run the NCTM facebook page posed this week:

Find the next three terms of the sequence 2, 8, 4, 10, 5, 11, 5.5, …

Feel free to work it out. I’ll give you a minute.


still need more time?


give up?

Okay. The answer is 11.5, 5.75, 11.75.

The pattern is interesting. Informally, we might say “add 6, divide by 2.” This is an atypical kind of sequence, in which it seems as though we have two different rules at work in the same sequence. Let’s call this an Arithmetic/Geometric Hybrid Sequence. (Does anyone have a better name for these kinds of sequences?)

But a deeper question came out in the comments: Someone asked for the explicit rule. After a little work, I came up with one. I’ll give you my explicit rule, but you’ll have to figure out where it came from yourself:

a_n=\begin{cases}6-4\left(\frac{1}{2}\right)^{\frac{n-1}{2}}, & n \text{ odd} \\ 12-4\left(\frac{1}{2}\right)^{\frac{n-2}{2}}, & n \text{ even}\end{cases}

More generally, if we have a sequence in which we add d, then multiply by r repeatedly, beginning with a_1, the explicit rule is

a_n=\begin{cases}\frac{rd}{1-r}+\left(a_1-\frac{rd}{1-r}\right)r^{\frac{n-1}{2}}, & n \text{ odd} \\ \frac{d}{1-r}+\left(a_1-\frac{rd}{1-r}\right)r^{\frac{n-2}{2}}, & n \text{ even}\end{cases}.

And if instead we multiply first and then add, we have the following similar rule.

a_n=\begin{cases}\frac{d}{1-r}+\left(a_1-d-\frac{rd}{1-r}\right)r^{\frac{n-1}{2}}, & n \text{ odd} \\ \frac{rd}{1-r}+\left(a_1-d-\frac{rd}{1-r}\right)r^{\frac{n}{2}}, & n \text{ even}\end{cases}.

And there you have it! The explicit formulas for an Arithmetic/Geometric Hybrid Sequence :-).

(Perhaps another day I’ll show my work. For now, I leave it the reader to verify these formulas.)

Lego Price Statistics

Do you ever get the feeling that Lego Bricks are becoming more expensive? When we were kids, boy, it felt like they were cheaper, right? I mean, the biggest sets were $150 at most. I have a HUGE Lego collection, and it definitely seems like Legos back in my day were more affordable.

Trouble is, that’s not really true. It turns out that Lego bricks have actually gotten cheaper, by almost every measure you can think of (weight/number of pieces/licensed sets). Check out this incredibly thorough post on Lego Price statistics over time. The article is entitled, “What Happened with LEGO” by Andrew Sielen. It’s very thoughtfully done.

[ht: Gene Chase]

Half-your-age-plus-seven rule

Looking for a great application of systems of linear inequalities for your Algebra 1 or 2 class? Look no further than today’s GraphJam contribution:

You might just give this picture to students and ask THEM to come up with the equations of the three lines.

There’s also a nice discussion to be had here about inverse functions, or about intersecting lines. And there might also be a good discussion about the domain of reasonableness.

Here are the three functions:




This is especially interesting because I never think of the rule as putting boundaries on a person’s dating age range. Usually people talk about it in the context of “how old of a person can I date?” not “how young of a person can I date?” Or rather, if you’re asking the second question, it’s usually phrased “how young of a person can date me?” (All of these questions relate to functions and their inverses!) But in fact, the half-your-age-plus-seven rule puts a lower and and upper bound on the ages of those you can date.

As far as reasonableness, is it fair to say that my daughter who is 1 can date someone who is between the age of -12 and 7.5? I don’t think so! I’m definitely going to be chasing off those -12 year-olds, I can already tell :-).

For my daughter, the domain of reasonableness might be x\geq 18!

Happy e day!

Well, as you can see by the count-down on the right side of this blog, e day has arrived! I mentioned it in most of my classes today, even though it’s not as well-celebrated as π. I think we should change that. It’s my opinion that e is at least as good, if not a more important constant, than π.

I’m biased though. Today is also my daughter’s first birthday. I love that she was born on e day! Awesome! :-)


Happy Birthday, Ruthie Chase!


Friday tidbits

Happy Friday! Hope everyone has their kids registered for the AMC next week. If you haven’t already subscribed to the AMC problem-a-day from the MAA, you should! It’ll keep you sharp :-).

Here are a few nice things seen ’round the web recently:

  • The Scrambler, by Dan Meyer & co. Here, Dan challenges us to analyze a classic carnival ride, and asks us to predict where you end up at the end of the ride. And by Dan & “co”, I mean “comment” folks who have generated lots of fun solutions and applets. Dan made a great interactive version here, too.

  • And finally, this lengthy article “Reflections on mathematics and Democracy” by Lynn Arthur Steen is well worth the time [ht: Gene Chase]. He thoughtfully discusses the need for math education among the citizenship. Is “usefulness” to the democracy the highest goal of secondary math education? Do we aim to create quantitatively literate citizens? Or do we put them on the Calculus track and prepare them for college-level STEM careers? Does teaching “quantitative literacy” even count as Mathematics with a capital M? This is obviously something I’ve been thinking a lot about recently. Here are a few of my favorite excerpts:

Ten years ago I addressed the first question posed to this panel in Mathematics and Democracy—a collection of essays from a variety of professionals both inside and outside mathematics.4 (These essays are available for free downloading on the MAA website.) The chief message of this volume is that the mathematics taught in school bears little relationship to the mathematics needed for active citizenship. That mathematics we called quantitative literacy (QL) to contrast it with traditional school mathematics which, historically, is the mathematics students needed to prepare for calculus.

Mathematics and quantitative literacy are distinct but overlapping domains. Whereas mathematics’ power derives from its generality and abstraction, QL is anchored in specific contexts and real world data. An alternative framing of the challenge for this panel is to ask whether perhaps QL might be a more effective approach to high school mathematics for all.

What we forget, however, is that when NCTM initiated its standards work, most mathematics teachers did not actually believe in the goal of teaching mathematics to all high school students. Whereas now we argue about how much and what kind of mathematics to teach in high school, three decades ago debate centered on who should learn high school mathematics. At that time, the curriculum was designed to efficiently sort students into those who were capable of learning high school mathematics and those who were not. So between grades 7 and 9, somewhere between one-third and one-half of the students were placed in a course called General Math—an enervating, pointless review of arithmetic.

Another decade has passed, and our ambitions are now much higher: a common core for all, with everyone emerging from high school ready for college. In one generation, the political view of high school mathematics has progressed from something only some need (or can) learn to a core subject in which all students can and must become proficient. That’s quite a rapid change in ends, which has been matched by a major change in means. The very idea of a common curriculum enforced with common assessments was all but unthinkable back in the 1980s.